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It is shown that the critical properties of a recently studied model for nonequilibrium wetting are robust if
one extends the dynamic rules by single-particle diffusion on terraces of the wetting layer. Examining the
behavior at the critical point and along the phase transition line, we identify a special point in the phase
diagram where detailed balance of the dynamical processes is partially broken.
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I. INTRODUCTION

In recent years there has been a considerable progress in
the understanding of wetting transitions far from equilib-
rium. Such wetting processes are usually modelled by a non-
equilibrium growth process of an interface in the vicinity of
a hardcore wall which mimics an inert substrate. The dy-
namic rules of the growth process are chosen in such a way
that detailed balance is violated, driving the system away
from thermal equilibrium. Depending on the balance be-
tween growth and evaporation rates the interface may either
fluctuate in the vicinity or detach from the wall, leading to a
wetting transition between a pinned and a moving phase.

A simple model for nonequilibrium wetting was intro-
duced in Ref. �1�. It is defined as a solid-on-solid growth
process on a lattice with the restriction that the heights at
neighboring sites may differ by at most one unit. While par-
ticles are deposited anywhere at the same rate, the rates for
evaporation at the edges and in the middle of terraces are
generally different. It was shown that such a growth process
is effectively described by a Kardar-Parisi-Zhang equation
�2� in a potential V:

�h�x�,t�
�t

= ��2h�x�,t� −
�V�h�x�,t��

�h�x�,t�
+ ���h�x�,t��2 + ��x�,t� .

�1�

Here � is a white Gaussian noise, x� denotes the position on
the substrate, � controls the surface tension, and V�h� is a
potential of the form

V�h� = �� if h � 0,

− v0h if h � 0,
�2�

where v0 controls the propagation velocity of a free inter-
face. The nonlinear term ���h�x� , t��2 can be shown to break
detailed balance and hence drives the system away from
thermal equilibrium, even if the model is in the bound phase.

As shown in Refs. �3,4�, the properties of wetting transi-
tions under nonequilibrium conditions differ significantly
from those at thermal equilibrium. For example, a nonequi-
librium wetting transition is characterized by a different set
of critical exponents. Moreover, if one introduces an addi-
tional short-range force between the substrate and the inter-
face by adding a local well at h=0 in the potential V�h�,
wetting models far from equilibrium may exhibit a phenom-
enon called phase coexistence, i.e., the bound and the mov-

ing phase are both thermodynamically stable in a certain
region of the phase diagram.

So far these theoretical predictions have not been verified
experimentally for various reasons. On the one hand, it is
very difficult to specify experimental conditions where de-
tailed balance is broken on the level of microscopic transi-
tion rates. On the other hand, the models studied so far are
unnatural in several respects. For example, in the model of
Ref. �1� the transition rates are assumed to be homogeneous
while realistic experiments are always affected by inhomo-
geneities and impurities. Another idealistic assumption of the
model, on which we will focus in the present work, is the
circumstance that single atoms are not allowed to diffuse
although they have a finite rate for evaporation. In experi-
ments, however, one expects that the energy barrier for
single-particle diffusion is of the same order or even less
than the energy barrier for evaporation. Therefore, the ques-
tion arises whether the phenomena of nonequilibrium wet-
ting observed so far are robust against diffusion of solitary
particles.

Naively, one may expect that the inclusion of single-
particle diffusion leads to an effective term of the form D�2h
in the continuum limit, which can be absorbed into the first
term of the KPZ equation �1� without changing the critical
properties. However, in what follows we assume that only
single particles are allowed to diffuse, while islands of two
or more atoms remain stable. In this case the dynamics is
changed in a nontrivial way, including interesting phenom-
ena such as partially broken detailed balance.

The paper is organized as follows. In Sec. II we review
the definition of the model introduced in Ref. �1� and modify
the dynamical rules in order to incorporate single-particle
diffusion. Section III summarizes essential properties of
equilibrium and nonequilibrium wetting transitions. In Sec.
IV we first discuss a special case, where the dynamics of the
model with diffusion is characterized by partially broken de-
tailed balance, while we turn to the general behavior in Sec.
V. Finally our results are summarized in Sec. VI.

II. DESCRIPTION OF THE MODEL

The original model introduced in Ref. �1� is defined as
follows. The form of the interface is described by height
variables hi=0,1 , . . . , at site i of an one-dimensional lattice
with L sites, meaning that overhangs are not allowed. The
configurations of the interface fulfill the so-called restricted
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solid-on-solid �RSOS� constraint, i.e., the height difference
of two neighboring sites is restricted by

�hi − hi±1� � 1. �3�

The model evolves random sequentially according to the fol-
lowing dynamical rules. For each update with time increment
�t= 1

L , we randomly choose a site. Then one of the following
processes is randomly selected according to specific prob-
abilities �see Fig. 1�.

�a� An atom desorbs at the edge of a plateau with prob-
ability r

N :

hi → min�hi−1,hi,hi+1� . �4�

�b� A single atom desorbs with probability r
N :

hi → hi − 1. �5�

�c� An atom desorbs from the interior of a plateau with
probability p

N :

hi → hi − 1. �6�

�d� An atom is deposited anywhere on the surface with
probability q

N :

hi → hi + 1. �7�

Here N= 1
2r+p+q denotes the normalization constant. If the

moves listed above would result into a configuration that
violates the RSOS constraint �3� or produces a height less
than zero the move is abandoned, time is incremented, and
the next site is selected. These rules can be generalized easily
to higher dimensions.

In this model there is no diffusion of solitary atoms along
the surface. As outlined in the Introduction, one possible step
to make the model more realistic is to introduce an additional
rule for explicit diffusion. More specifically, a single atom is
now allowed to diffuse a single step along a plateau at rate D
by the following rule.

�e� Diffusion of a single atom on a plateau to the right or
to the left with equal probability D

N :

hi → hi − 1, hi±1 → hi±1 + 1. �8�

Again this move is carried out only if the resulting con-
figuration fulfills the RSOS constraint with non-negative
heights. Note that this additional rule is not in conflict with
the previous rules listed above. The normalization has to be
replaced by N= 1

D+2r+p+q so that the probabilities change ac-
cordingly.

III. PHENOMENOLOGY OF THE TRANSITION
WITHOUT DIFFUSION

Let us first review the properties of the wetting transition
in the original model without diffusion. Obviously, for a
large growth rate q the interface propagates while for suffi-
ciently small q it fluctuates near the wall. One can easily
conclude that there is a critical growth rate qc where the
propagation velocity of a free interface is zero. This defines a
line of second-order phase transitions, which is shown in Fig.
2. This unbinding transition was shown to be continuous.

Choosing p=1 and q�1 it was shown in Ref. �1� that the
dynamical rules �a�–�d� obey detailed balance. This means
that for any microscopic transition the reverse transition also
exists and that the corresponding probability currents in the
stationary state compensate each other. Therefore, the bound
interface approaches an equilibrium state in which the prob-
ability distribution of interface configurations is given by the
Boltzmann ensemble.

For p�1, however, it can be shown that detailed balance
is broken �see Fig. 3�. As before, the critical point qc can be

FIG. 1. Illustration of the dynamical rules. The transitions are
�a� desorption at an edge, �b� desorption of a single atom, and �c�
desorption out of the middle of a plateau. Panel �d� displays three
different situations where an atom can be deposited. Furthermore
the additional diffusive process considered in the present work is
illustrated in �e�.

FIG. 2. Phase diagram of the model for nonequilibrium wetting
introduced in Ref. �1� in one dimension. A line of continuous phase
transitions separates the pinned and the moving phase. For p=1 the
dynamical processes obey detailed balance �see text�. Introducing
diffusion shifts the phase transition line slightly but the overall
structure of the phase diagram remains the same.
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determined by readjusting q in such a way that the
asymptotic growth velocity is zero.

A free interface is known to roughen algebraically in such
a way that the width increases as

w � t	f�t/Lz� , �9�

where f is a scaling function, L is the lateral system size, and
	 and z are the roughening and the dynamical exponent,
respectively. It can be shown that for p=1, where the bound
phase exhibits detailed balance, the transition belongs to the
so-called Edwards-Wilkinson universality class �5�, which is
characterized by the exponents 	=1/4 and z=2. In the non-
equilibrium case p�1, however, the asymptotic roughening
behavior belongs to the KPZ universality class with the ex-
ponents 	=1/3 and z=3/2 in one dimension �2�.

Introducing a wall at zero height induces an unbinding
transition at q=qc, which may be characterized by the den-
sity of contact points 
0�t�, where the interface has zero
height. At the transition this quantity decays algebraically as

0�t�� t−�, giving rise to an additional exponent �6–8�

� = �1.18�1� for p � 1,

3/4 for p = 1,

0.23�1� for p � 1.

�10�

This means that nonequilibrium wetting can be categorized
into three different universality classes, namely, the
Edwards-Wilkinson class for p=1 and two different KPZ-
like classes depending on the sign of � in the KPZ equation,
i.e., on p−1.

To each point of the phase transition line there is a profile
P�h , t� that describes the probability to find the interface at
height h. This probability distribution scales as

P�h� = t−	g�ht−	� , �11�

where g is another universal scaling function describing the
form of the profile. Therefore, profiles measured at different
times can be collapsed onto one curve by plotting P�h�t	

against ht−	. This method also allows one to estimate the
exponent 	. As a major breakthrough, Prähofer and Spohn
were able to compute the scaling function g for the case of a
free interface analytically �9�. However, for nonequilibrium
wetting �i.e., with a wall at zero height� the scaling function

is still unknown although it could be approximated recently
by mean-field techniques �10�. In the following we investi-
gate to what extent these results are robust with respect to
diffusion of single particles.

IV. TRANSITION WITH DIFFUSION FOR p=1

Let us now turn to the generalized model for nonequilib-
rium wetting which includes diffusion of single particles
�rule �e� in Fig. 1�. In the model we assume that adatoms
attach to an existent island irreversibly. This assumption is
motivated by the empirical observation that the potential bar-
rier for the detachment of an adatom is much larger than that
for a simple jump along the terrace. First we note that this
process always breaks detailed balance, even for p=1. This
happens when an atom diffuses towards the edge of an island
where it sticks irreversibly as illustrated in Fig. 4. As men-
tioned before this process cannot be reversed. So the inter-
esting question is whether diffusion leads to a different type
of critical behavior.

To answer this question we performed standard Monte
Carlo simulations of a �1+1�-dimensional system with L
=4096 sites and T=65536 time steps with and without dif-
fusion, averaging over 100 independent runs. As shown in
Fig. 5, the width increases as t1/4 in both cases. Surprisingly,
detailed balance can be broken without changing the critical
point qc=1 and the exponent 	=1/4, i.e., without driving the
transition away from the Edwards-Wilkinson universality
class. However, as will be shown below, it is possible to
understand this apparent contradiction.

A. Invariance of the critical point for p=1

Let us first examine the possible transitions for each con-
figuration of a free interface. For example, Fig. 6 shows a
particular configuration of 6 sites where a particle diffuses
from site 3 to site 4. Initially we set D=0 and q=qc=1,
meaning that after sufficiently long time all allowed configu-
rations occur with the same probability. Counting all sites
where atoms can be deposited and similarly all sites from
where particles can desorb we quantify how this segment of
the interface contributes to the average growth velocity in the
next instance of time. Since the asymptotic propagation ve-
locity at the transition is zero, these probabilities for deposi-
tion and evaporation averaged over all possible configura-
tions have to be equal. Then, switching on diffusion, we pose
the question whether diffusive moves destroy this balance or
not.

Indeed, for some configurations such as the one shown in
Fig. 6 the number of potential adsorption and desorption
sites before and after the diffusive move changes. However,

FIG. 3. Breaking of detailed balance for p�1. The figure shows
four possible configurations of the interface together with the cor-
responding transition rates. If PA denoted the probability to find the
interface in configuration A, detailed balance applied along the up-
per sequence of transitions would imply PC=q2PA while the lower
sequence of transitions would give PC= �q2 / p�PA. Therefore, this
counterexample demonstrates that detailed balance is broken for p
�1.

FIG. 4. Breaking of detailed balance by single-particle diffusion.
A particle diffuses to the edge of an island where it sticks irrevers-
ibly. This process cannot be reversed so that detailed balance is
broken.
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for each configuration there exists a mirror-symmetric con-
figuration obtained by reflections h→−h and/or x→−x, as
demonstrated in Fig. 7. As can be seen, this mapping turns
potential absorption sites into desorption sites and vice versa.
Since both of them occur with the same probability, the av-
eraged change of the susceptibilities for adsorption and de-
sorption cancel each other, meaning that the growth velocity
remains zero even when diffusion is turned on. This argu-
ment proves that for p=1 the transition point qc=1 is inde-
pendent of the diffusion rate D.

B. Invariance of the height profiles for p=1

Taking a closer look at the violation of the detailed bal-
ance one can see that it is only a partial violation. First we
note that diffusion does not change the total height H=	ihi,
while all other transitions change H by one unit. Therefore,
the configuration space of the system can be decomposed
into sectors characterized by the value of H. Within those
sectors diffusion is the only transition, while all other transi-
tions take place between the sectors. Together with the pre-
vious finding that the total rates for desorption and adsorp-
tion between the sectors is invariant we conclude that the
probability to find the system in a particular sector does not
depend on D. Moreover, it is obvious that diffusive moves
within the sectors do not change the height profile P�h�. This

means that the height profile does not depend on the value of
D and the dynamics between the sector still obeys detailed
balance. Therefore, the present model provides an interesting
example of a system where detailed balance is partially bro-
ken.

V. TRANSITION WITH DIFFUSION FOR pÅ1

For p�1 we expect that the critical point qc depends on
the diffusion rate. For example, for the configurations shown
in Figs. 6 and 7 the aforementioned compensation mecha-
nism is no longer possible since rates for deposition q�1
and desorption at the edges r=1 are different. In fact, con-
sidering all possible configurations of a segment of six sites,
one finds that a diffusive move creates seven additional sites
where an atom could desorb with rate p and six additional
sites where an atom could be deposited with rate q while
there will be one site less from where an atom could desorb
with rate r. As the rates in the nonequilibrium case along the
phase transition line are not equal any more the phase tran-
sition line with diffusion is different from the one without
diffusion.

In order to verify whether diffusion changes the critical
behavior we determined interface profiles at the critical
point. For D=1 we find that the critical point changes only
slightly. Again different curves of profiles recorded at differ-

FIG. 5. �Color online� This
graph shows that the width scales
according to the Edwards-
Wilkinson universality class as w
� t1/4.

FIG. 6. A possible configuration for a diffusive transition from
site number 3 to site number 4. The arrows indicate those sites
where atoms could adsorb or desorb, respectively. Obviously, the
diffusive move shown here increases the number of sites susceptible
to deposition by 1.

FIG. 7. The mirror-symmetric configuration of the configuration
shown in Fig. 6 obtained by reflections h→−h and x→−x. Here a
diffusive move increases the number of sites susceptible to desorp-
tion by 1, compensating the contribution of the configuration shown
in Fig. 6.
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ent times can be collapsed onto a single curve by using the
scaling form �11� with the correct scaling exponent 	. Col-
lapsing our profiles �see Fig. 8� with the same value of 	 we
obtain a convincing data collapse, supporting that for p�1
diffusion does not change the universality class of the tran-
sition.

VI. CONCLUSIONS

In this paper we have generalized a previously introduced
model for nonequilibrium wetting in such a way that freshly

deposited adatoms are allowed to diffuse. This generalization
is necessary to compare this model with possible experimen-
tal applications, where the energy barrier for horizontal dif-
fusion is usually of the same order or even less than the
energy barrier for evaporation. As a main result we observe
that single-particle diffusion in 1+1 dimensions does not
change the critical behavior at the transition, i.e., all predic-
tions made for nonequilibrium in previous works remain
valid.

The results for the special point p=1, where the original
model exhibited detailed balance in the bound phase, are
particular surprising. Although diffusion breaks detailed bal-
ance and even changes the visual appearance of the interface,
the transition point qc=1 as well as the rescaled height pro-
file remain invariant. This apparent contradiction can be re-
solved by observing that detailed balance is only partially
broken within sectors of constant integrated height. This ex-
ample demonstrates that broken detailed balance does not
always drive the system away from equilibrium.

Extending models for nonequilibrium wetting by single-
particle diffusion is only a first step towards a more realistic
modelling aiming at a quantitative comparison with possible
experiments. In addition, a detailed survey of energy barriers
and the corresponding transition rates under typical experi-
mental conditions would be needed. Moreover, it would be
interesting to examine the influence of disorder caused by
inhomogeneities and defects of the substrate.

ACKNOWLEDGMENTS

We would like to thank D. Mukamel for useful discus-
sions.

�1� H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev.
Lett. 79, 2710 �1997�.

�2� M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,
889 �1986�.

�3� M. A. Muñoz and T. Hwa, Europhys. Lett. 41, 147 �1998�.
�4� H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev.

E 61, R1032 �2000�; 68, 041606 �2003�.
�5� S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser.

A 381, 17 �1982�.
�6� Y. Tu, G. Grinstein and M. A Munõz, Phys. Rev. Lett. 78, 274

�1997�.
�7� M. A. Muñoz, F. de los Santos, and A. Achahbar, Braz. J.

Phys. 33, 443 �2003�.
�8� T. Kissinger, A. Kotowicz, O. Kurz, F. Ginelli, and H. Hinrich-

sen, J. Stat. Mech.: Theory Exp. � 2005� P06002.
�9� M. Prähofer and H. Spohn, Phys. Rev. Lett. 84, 4882 �2000�;

Physica A 279, 342 �2000�; J. Stat. Phys. 108, 1071 �2002�;
115, 255 �2004�.

�10� F. Ginelli and H. Hinrichsen, J. Phys. A 37, 11085 �2004�.

FIG. 8. �Color online� Data collapse for p=0.3 for different
times.

INFLUENCE OF DIFFUSION ON MODELS FOR… PHYSICAL REVIEW E 74, 041607 �2006�

041607-5


